VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease.

نویسندگان

  • Vijay Chaitanya Ganta
  • Min Choi
  • Anna Kutateladze
  • Brian H Annex
چکیده

RATIONALE Atherosclerotic-arterial occlusions decrease tissue perfusion causing ischemia to lower limbs in patients with peripheral arterial disease (PAD). Ischemia in muscle induces an angiogenic response, but the magnitude of this response is frequently inadequate to meet tissue perfusion requirements. Alternate splicing in the exon-8 of vascular endothelial growth factor (VEGF)-A results in production of proangiogenic VEGFxxxa isoforms (VEGF165a, 165 for the 165 amino acid product) and antiangiogenic VEGFxxxb (VEGF165b) isoforms. OBJECTIVE The antiangiogenic VEGFxxxb isoforms are thought to antagonize VEGFxxxa isoforms and decrease activation of VEGF receptor-2 (VEGFR2), hereunto considered the dominant receptor in postnatal angiogenesis in PAD. Our data will show that VEGF165b inhibits VEGFR1 signal transducer and activator of transcription (STAT)-3 signaling to decrease angiogenesis in human and experimental PAD. METHODS AND RESULTS In human PAD versus control muscle biopsies, VEGF165b: (1) is elevated, (2) is bound higher (versus VEGF165a) to VEGFR1 not VEGFR2, and (3) levels correlated with decreased VEGFR1, not VEGFR2, activation. In experimental PAD, delivery of an isoform-specific monoclonal antibody to VEGF165b versus control antibody enhanced perfusion in animal model of severe PAD (Balb/c strain) without activating VEGFR2 signaling but with increased VEGFR1 activation. Receptor pull-down experiments demonstrate that VEGF165b inhibition versus control increased VEGFR1-STAT3 binding and STAT3 activation, independent of Janus-activated kinase-1)/Janus-activated kinase-2. Using VEGFR1+/- mice that could not increase VEGFR1 after ischemia, we confirm that VEGF165b decreases VEGFR1-STAT3 signaling to decrease perfusion. CONCLUSIONS Our results indicate that VEGF165b prevents activation of VEGFR1-STAT3 signaling by VEGF165a and hence inhibits angiogenesis and perfusion recovery in PAD muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systems Pharmacology of VEGF165b in Peripheral Artery Disease

We built a whole-body computational model to study the role of the poorly understood vascular endothelial growth factor (VEGF)165b splice isoform in peripheral artery disease (PAD). This model was built and validated using published and new experimental data from cells, mice, and humans, and explicitly accounts for known properties of VEGF165b : lack of extracellular matrix (ECM)-binding and we...

متن کامل

A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse

Angiogenesis is the growth of new blood vessels from pre-existing microvessels. Peripheral arterial disease (PAD) is caused by atherosclerosis that results in ischemia mostly in the lower extremities. Clinical trials including VEGF-A administration for therapeutic angiogenesis have not been successful. The existence of anti-angiogenic isoform (VEGF165b) in PAD muscle tissues is a potential caus...

متن کامل

P-189: Investigation of Vascular Endothelial Growth Factor Receptors Expression in Ectopic Pregnancy

Background: Ectopic pregnancy (EP) is a complication of conception in which the embryo implants outside of uterine cavity. The increasing incidence of serious maternal morbidity resulting from EP has prompted the search for biomarkers to aid in early diagnosis and take advantage of conservative treatments. One of the effective biomarkers in EP is vascular endothelial growth factor (VEGF). VEGF ...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

The Role of Vascular Endothelial Growth Factor Receptor-1 Signaling in the Recovery from Ischemia

Vascular endothelial growth factor (VEGF) is one of the most potent angiogenesis stimulators. VEGF binds to VEGF receptor 1 (VEGFR1), inducing angiogenesis through the receptor's tyrosine kinase domain (TK), but the mechanism is not well understood. We investigated the role of VEGFR1 tyrosine kinase signaling in angiogenesis using the ischemic hind limb model. Relative to control mice, blood fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 120 2  شماره 

صفحات  -

تاریخ انتشار 2017